21 research outputs found

    Exact and Heuristic Methods for Integrated Container Terminal Problems

    Get PDF

    Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results

    Get PDF
    Most of the operational problems in container terminals are strongly interconnected. In this paper, we study the integrated Berth Allocation and Quay Crane Assignment Problem in seaport container terminals. We will extend the current state-of-the-art by proposing novel set partitioning models. To improve the performance of the set partitioning formulations, a number of variable reduction techniques are proposed. Furthermore, we analyze the effects of different discretization schemes and the impact of using a time-variant/invariant quay crane allocation policy. Computational experiments show that the proposed models significantly improve the benchmark solutions of the current state-of-art optimal approaches

    Flexible ship loading problem with transfer vehicle assignment and scheduling

    Get PDF
    This paper presents the flexible containership loading problem for seaport container terminals. The integrated management of loading operations, planning of the transport vehicles to use and their scheduling is what we define as the Flexible Ship Loading Problem (FSLP). The flexibility comes from a cooperative agreement between the terminal operator and the liner shipping company, specifying that the terminal has the right to decide which specific container to load for each slot obeying the class-based stowage plan received from the liner. We formulate a mathematical model for the problem. Then we present various modelling enhancements and a mathematical model to obtain strong lower bounds. We also propose a heuristic algorithm to solve the problem. It is shown that enhancements improve the performance of formulation significantly, and the heuristic efficiently generates high-quality solutions. Results also point out that substantial cost savings can be achieved by integrating the ship loading operations

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    An Efficient Heuristic Algorithm for Capacitated Lot Sizing Problem with Overtime Decisions

    No full text
    Part 1: Production ProcessInternational audienceCapacitated Lot Sizing Problem is a very important tactical level decision making problem that answers the questions of producing when and how many in dynamic demand environment. Solving Capacitated Lot Sizing Problem with Overtime decisions (CLSPO) and extensions derived from the fundamental structure optimally suffer from combinatorial nature of the problem. The aim of the study is to form a two-stage heuristic algorithm to solve related problem in polynomial time. In first part, characteristics of problem structure are presented. Dominance properties are presented to help algorithm obtain a bounded search area. Proposed algorithm directly utilizes such shortcoming. Performance of approach is tested by using different criteria. And finally, robustness test are applied to check how well algorithm performs against fluctuations in its data. Simulated annealing as improvement heuristic performs well for related problem. It is also observed that fluctuations of data directly affects performance outcome. Obtained results also reveal that performance of improvement heuristic highly depends on constructive heuristic. Algorithm is also applied to an industry case study to plan master production schedule with minimum costs
    corecore